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S-PRIMAL IDEALS IN TRIVIAL EXTENSION AND IN
AMALGAMATION ALGEBRA

KARIMA ALAOUI ISMAILI AND YOUSSEF ZAHIR

ABSTRACT. Let A be a commutative ring with identity and S be a
multiplicative subset of A. In this paper, we introduce and study the
notion of S-primal ideals as a generalization of the notion of primal
ideals. We define an ideal I disjoint with .S to be S-primal if there exists
s € S such that (I : s) is primal. Several properties of S-primal ideals
are given. We investigate the behavior of the S-primal ideals under
passage to some algebraic constructions such as homomorphic image,
direct product and localization. Also, we study the relationship between
the S-primal ideals, S-irreducible and S-primary ideals. Moreover, we
examine the transfer of S-primal property to some ideals of trivial ring
extensions and amalgamation of rings along an ideal.

1. INTRODUCTION

Let A be a commutative ring with identity. A subset S of A is called a
multiplicative subset if it satisfies the following conditions: (i) 1 € S and
0 ¢ S; (ii) for each s1,s9 € S, we have s1s9 € S. Also, we denote by Z(A)
the set of zero-divisors of A and if I is a proper ideal of A then, v/I denotes
the radical of I. Any undefined notation or terminology is standard as in
[5].

Motivated by Noether’s work on the existence and uniqueness of the de-
composition of an ideal in a Noetherian ring as an intersection of primary
ideals, in [12], L. Fuchs introduced and studied the notion of primal ideals.
An element x € A is called prime to a proper ideal T if (I : ) = I. Recall
from [12] that a proper ideal I is said to be primal if I* the set of elements
of A which are not prime to I is an ideal of A; this ideal is then a prime
and is called the adjoint ideal of I. Evidently, I* corresponds to the set of
zero-divisors in the factor ring A/I. Also in [12], the author presents sev-
eral properties of primal ideals including their advantage over primary ideals
such that, without any chain condition, every irreducible ideal is primal and
every ideal is the intersection of primal ideals.

As a generalization of a primal ideals, considering N be a proper submod-
ule of an A-module E. Recall from [9] that an element a € A is called prime
to N if (N B a) = N. A proper submodule N of F is said to be primal
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if adj(N); the set of all elements of A that are not prime to N, forms an
ideal of A who is called the adjoint ideal of N. Note that if N is a primal
submodule of E, then the ideal adj(N) is a prime ideal (see [4]).

In [14], A. Hamed and A. Malek introduced and studied the concept of
S-prime ideals as a generalization of prime ideals. An ideal I of A disjoint
with S is said to be an S-prime ideal of A if there exists s € S such that for
all a,b € A with ab € I, we have either sa € I or sb € I. Thus, an ideal I
of A disjoint with S is S-prime if and only if there exists s € S such (I : s)
is a prime ideal of A.

Motivated by this generalization of prime ideals, we introduce and study
the notion of S-primal ideals. Let S be a multiplicative subset of A and I be
an ideal of A disjoint with S. The ideal I is called S-primal if there exists
s € S such that (I : s)*; the set of all elements of A which are not prime to
(I :s) forms an ideal of A called the s-adjoint of I. Thus, an ideal I of A
disjoint with S is S-primal if and only if there exists s € S such that (I : s)
is primal ideal of A.

In the first section, we study some basic properties of the class of S-
primal ideals. Thus, we investigate the behavior of S-primal property under
homomorphic image, factor ring, direct product and localization.

The second section is devoted to the study of the relation between the
concepts of S-primal, S-primary and S-irreducible ideals. It is shown that
every S-irreducible ideal is S-primal and we give a necessary and sufficient
condition for an S-primal ideal to be an S-primary ideal. Also, we charac-
terize a ring in which every ideal is S-primal.

The last section deals to study the S-primal property in trivial ring exten-
sion and amalgamated ring. Also, we give examples of the ideals exhibiting
this property.

2. BASIC RESULTS
We recall our key definition :

Definition 2.1. The ideal I is called S-primal if there exists s € S such
that (I : s)*; the set of all elements of A which are not prime to (I : s) forms
an ideal of A called the s-adjoint of I.

Remark 2.2. (1) If S consists of units of a ring A, then the primal and
the S-primal ideals coincide.

(2) Every primal ideal is S-primal. The converse need not true in gen-
eral. Indeed, we consider A = Z, S = {2"/n € N} and I = 6Z.
Clearly INS =0 and I is S-primal since (I : 2)* = (3)* = (3). But,
I is not primal ideal of A since2 € I* and3 € I* but 1 =3—-2 ¢ TI*.

(3) If SNI* =0 then, (I :s)* =1I* for all s € S, and thus the notions
of primal and the S-primal ideals coincide.

Let f : A — B be a ring homomorphism. Recall that if f(S) does not
contain zero, then it is a multiplicative subset of B. Conversely, if T is a
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multiplicative subset of B, then f~!(T) is a multiplicative subset of A.

The following result investigates the stability of S-primal property under
homomorphic image.

Proposition 2.3. Let f: A — B be a surjective ring homomorphism and
S and T are multiplicative subsets of A and B respectively. Then:
(1) If J is a T-primal ideal of B, then f~1(J) is an f~1(T)-primal ideal
of A.
(2) Suppose that Ker(f) C I. If I is an S-primal ideal of A, then f(I)
is an f(S)-primal ideal of B.

The proof of this proposition draws on the following lemma.

Lemma 2.4. Let f: A — B be a ring homomorphism and J be a proper
ideal of B. Then :
(1) (FH (D) € 1),
(2) If f is surjective, then (f~1(J))* = f~1(J*).

Proof.
(1) Let x € (f~1(J))*. Then (f~1(J): ) ¢ f~1(J). So there exists a € A
such that ax € f~1(J) but a ¢ f~(J). Thus f(a)f(z) € J and f(a) ¢ J.
Then f(z) € J* and hence = € f~1(J*).
(2) Let € f~%(J*). Then f(x) € J* and so (J : f(z)) ¢ J. Hence, there
exists b € B such that bf(z) € J and b ¢ J. Since f is surjective, then
there exists a € A such that b = f(a). Thus f(az) € J and f(a) ¢ J and
then ax € f~1(J) and a ¢ f~1(J). It follows that = € (f~1(J))*. Therefore
(fHI)" = f7HT).

(]

Proof of proposition 2.3

(1) First, note that for each s € T and r € f~(T) such that f(r) = s, we
have (f~1(J) : 7) = f~Y(J : s). Suppose that J is T-primal of B. Then
there exists ¢t € T such that (J : t) is a primal ideal of B and since f is
surjective, then there exists a € A such that f(a) = ¢t. Since TNJ = 0,
we get f~HT)N f71(J) = 0. By the definition, (J : t)* is an ideal of B.
So f~Y((J : t)*) is an ideal of A. As (f~1(J : t))* = ((f71(J) : a))* and
(FYT ) = YT : )% by Lemma 2.4, we get that (f~%(J) : a) is a
primal ideal of A, where a € f~1(T). Therefore f~1(J) is an f~(T)-primal
ideal of A.
(2) Assume that I is an S-primal ideal of A. Then there exists s € S such
that (I : s)* is an ideal of A. Since Ker(f) C I and INS =0, then 0 & f(5)
and f(I) N f(S) = 0. Let y1,y2 € (f() : f(s))". Then y1 = f(z1) and
g2 = f(zz) for some 21,25 € A, and ((F(D) : f(s)) : f(1) & (FT) : £(5))
and ((f(I) : f(s)) : f(z2)) & (f(I) : f(s)). So it is easy to deduce that
J(I:sz) ¢ f(I:s)and f(I:sz2) ¢ f(I:s). Then (I:sx1) ¢ (I:s)and
(L :sx2) ¢ (L:s). Thuszy, 29 € (I :s) andthen (({ :s):z1+x2) ¢ (I :s).
So, we can easily conclude ((f(I): f(s)) :vy1+y2) = f((T:8):21+22) &
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(f(I): f(s)). Therefore, y1 +y2 € (f(I): f(s))*, as desired.
d
When S is a subset of units of A, we obtain the following result.

Corollary 2.5. Let f: A — B be a surjective ring homomorphism. Then
(1) If J is a primal ideal of B, then f~%(J) is a primal ideal of A.
(2) Suppose that Ker(f) CI. If I is a primal ideal of A, then f(I) is a
primal ideal of B.

Remark 2.6. It is known that the contraction of a primary ideal by a ring
homomorphism is a primary ideal. However, this is not the case for a primal
ideal. You can see the Example 3.7 which is announced next.

It is easy to check that S = {5 = s+ I/s € S} is a multiplicative subset
of A/I since INS = .

The following proposition establishes a bijective correspondence between
the set of S-primal ideals of A containing I and the set of S-primal ideals
of A/I when S is a multiplicative subset of A/I.

Proposition 2.7. Let J be an ideal of A containing I. The map J — J/I
sets up a bijective correspondence between the set of S-primal ideals of A
containing I and the set of S-primal ideals of A/I.

Proof. Suppose that J is an S-primal ideal of A containing I. Let ¢ :
A — A/I be the canonical surjection. By Proposition 2.3, J/I = ¢(J) is
S-primal ideal of A/I. Conversely, let K be an S-primal ideal of A/I. Then
K = J/I, where J is an ideal of A containing I. Tt follows from Proposition
2.3 that J = ¢ 1(K) is an ¢~ !(S)-primal ideal of A. Since ¢~ 1(S) =1+ S
and JN (I +S) =0, then JNS ={. Also, there exist s € S and i € I such
that (J : 4+ s) is a primal ideal of A. Since (J : i+ s) = (J : s) (because
i € J) then (J : s) is a primal ideal of A. Thus J is an S-primal ideal of
A. O

Our next proposition characterizes S-primal ideals in a finite direct prod-
uct of rings. To do this, we recall that if S; is a multiplicative subset of a
ring A; for all i € {1,...,n}, then S x Sy X --- xS, is a multiplicative subset
of the ring Ay X Ay X -+ X A,.

Proposition 2.8. Let S1, .59, ...,.S, be multiplicative subsets of rings Ay, As, ...

respectively. Then I1 X Iy X -+ X I, is an (S1 X Sg X --- x Sp,)-primal ideal
of A1 X Ag x ... X A, if and only if there exists i such that I; is an S;-primal
ideal of A; and for each j # i we have Sj N I; # (.

Proof of proposition 2.8 (1) Without loss of generality, we may as-
sume that n = 2. Suppose that I} x Iy is an (S X Sz)-primal ideal of
Ay x Ay, Since (I x I3) N (S1 x S2) = 0, then there exists ¢ € {1,2} such
that I; N S; = (). We may assume that I; N S; = (. Since I; x I is an
(S1 x S)-primal ideal of Ay x Ag, then there exists (s1,s2) € S7 X Sy such
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that ((I1 x I) : (s1,82))* = ((I1 : s1) X (I2 : s2))* is an ideal of A; x As.
Suppose that sy ¢ I, then (1,0)(0,1) € (I; : s1) X (Iz : s2) but (1,0) ¢
(I1 : 51) x (I3 : s2) (since s1 ¢ I;) and hence (0,1) € ((I1 : s1) X (L2 : s2))*.
Moreover (0,1)(1,0) € (Il : 81) X (12 : 82) but (0, 1) ¢ (Il : 51) X (12 : 82)
(since sy ¢ I) and hence (1,0) € ((I1 : s1) x (I2 : s2))*. Then (1,1) =
(1,0)+(0,1) € ((I1 : s1) x (I3 : s2))*, which is absurd. Thus we have s9 € Iy
and then Sa NIy # 0. So we will have that ((I7 : s1) x Ag)* is an ideal of
A x Ag since (IQ : 82) = Ay. We show that ((Il : 51) XAQ)* = (Il : Sl)* X Ao,
indeed (x,y) € ((I1 : s1)x Ag)* if and only if there exists (a, b) € Aj x A such
that (a,b) ¢ (I : s1) x Az and (a,b)(x,y) € (I1 : s1) X Az if and only if there
exists (a,b) € Ay x Ay such that a ¢ (I : s1) and ax € (I3 : s1) if and only if
(z,y) € (I1 : 51)*x Ag. Thus, (7 : s1)* is an ideal of A; which implies that Iy
is an Si-primal ideal of A;. Conversely, assume that I3 is an Si-primal ideal
of Ay and SyN Iy # 0. Then (I; x I3)N(Sy X S2) = 0 and there exists s; € Sy
such that (7 : s1)* is an ideal of A;. Let s € Sy N I, then (I : s9) = Ao
and so ((Il X IQ) : (81,82)))* = ((Il : 31) X AQ)* = (Il : 81)* X AQ is an ideal
of A1 x As, as desired. O

When S = {1}, we get the same result found in [11, Lemma 13].

Corollary 2.9. I} x Is x --- X I, is a primal ideal of A1 X Ag X ... X A,
if and only if there exists i such that I; is a primal ideal of A; and for each
J #1 we have Ij = Aj.

Now, we are going to look at the behavior of the S-primal ideals under
passage to localization. Let ¢ : A — S~1A be the canonical map. It is well
known that since 0 ¢ ¢(S), then ¢(S) is a multiplicative subset of S~1A.

Proposition 2.10. Under the above notation, assume that SNI* = (. Let
T be a multiplicative subset of A. If I is a T-primal ideal of A, then S™'I
is ¢(T)-primal of S~1A.

Proof. Assume that I is T-primal. Since SNI* = (), then ¢~ *(S~1I) = I and
0 ¢ ¢(T). Note that S~1ING(T) = 0, otherwise, there exists ¢ € T such that
% € S7'T and thent € INT = (), absurd. Also, there exists t € T such that
(I :t) is a primal ideal of A. We show that S™'((I : t)*) = (S~ : £)*. In-
deed, let £ € ST1((I : ¢)*). Then, there exists u € S such that uz € (I : t)*.
Thus ((I : w) : at) ¢ (I :t). Since u ¢ I* then (I : u) = I and so
(I:xt) ¢ (I:t). Hence, there exists a € A such that azt € I and at ¢ I.
Thus % ¢ S™'T and % € S7'1. So ¢ ¢ (S7': %) and $2 € (S7'1: 4.
Therefore £ € (S7',4)*. Conversely, let 2 € (S7'I : 1)*  then there
exists ¢ € S7'A such that %2 € S7'J and % ¢ S~'I. So axt € I and
at ¢ I and then ax € (I :t) and a ¢ (I : t). Thus z € (I : t)* and then
L € S7Y((I:t)*). Since (I : t) is a primal ideal of A, then (I : t)* is an ideal
of A. So (S7': 1)* = S71(I : ¢)* is an ideal of S™'A. Consequently, S~'1
is a ¢(T)-primal ideal of S™1A. O
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We study the relationship between the S-primal, S-irreducible and S-
primary ideals. We show that an S-irreducible ideal is S-primal and we give
necessary and sufficient conditions for an S-primal ideal to be S-primary.
Also, we characterize the rings where every proper ideal is primal.

We start by generalizing of [12, Theorem 1]. We say that the ideal I
disjoint with S is S-irreducible if there exists s € S such that (I : s) is
irreducible.

Proposition 2.11. If I is an S-irreducible ideal of A, then I is an S-primal
ideal of A.

Proof. Suppose that I is not S-primal ideal of A and let s € S. Then
(I : s)* is not an ideal of A. Thus there exist z,y € (I : s)* such that
x+y ¢ (I:8)* So(T:s5)=UT:sx+sy) 2 :sx)N(I: sy). Also, we
have (I :s) C (I :sz)N(I:sy). Then (I :s)=(I:sx)N(I: sy). Since
(I:sx)# (I:s)and (I:sy)#(I:s), weget (I:s)isnot irreducible and
hence I is not S-irreducible. U

The following example shows that the converse of the previous proposition
need not true in general.

Example 2.12. Let A = K|[z,y, z], where K is a field and let S = {z",n €
N}. Let I = (x,9)? = (22, 2y,9?). First, note that INS = (). By [5, Exercice
8, P: 55], I is a primary. Then I is a primal and so I is an S-primal ideal
of A. But, forn > 1, (I:2")={0} and (I:1) (=1 = (2%,9) N (x,9?)) are
not irreducible ideals of A. Hence, I is not S-irreducible ideal of A.

Recall from [18], that an ideal I of A disjoint with S is S-primary if there
exists s € S such that for all z,y € A, if zy € I, then sz € I or sy € v/I. The
following result specifies the relationship between S-primary and S-primal
ideals.

Proposition 2.13. Let I be an ideal of A. Then I is S-primary if and only
if I is S-primal and there exists s € S such that \/(I : s) = (I :s)*.

Proof. (1) We claim that for each s € S, we have \/(I :s) C (I : s)*.
Indeed, let z € /(I : s) and n € N* the smallest integer such that z™ € (I :
s). Soa" 'z € (I:s) but 2" ¢ (I:5s). Hence x € (I : s)*. Now, assume
that I is S-primary. Then there exists s € S such that (I : s) is primary.
Let x € (L : s)*. Then (I : sz) ¢ (I : s). So there exists a € A such that
ar € (I :s)and a ¢ (I :s). Since (I : s) is primary, we get x € /(I : ).
Thus /(I :s) = (I : s)*. Therefore (I : s)* is an ideal of A and then I is
S-primal. Conversely, suppose that /(I : s) = (I : s)* for some s € S. Let
xz,y € Asuch that vy € I and s ¢ I. Then xy € (I : s) and z ¢ (I : s). So
y€ (I:s)*=+/(I:s). Hence, there exists n € N* such that y"s € I and
then ys € V1. (]
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In the last part of this section, we characterizes rings in which every ideal
disjoint with S is S-primal and we will deduce a characterization of the rings
where any proper ideal is primal. To do this, we need the following lemma.

Lemma 2.14. Let I,J be ideals of A.

(1) T is a prime ideal of A if and only if I = I*.
(2) If I,J € Spec(A), I L J and J L I, then (INJ)*=1TUJ.

Proof.
(1) Assume that T is a prime ideal of A and let x € I*. So (I : ) € I and
then there exists a € A such that az € I and a ¢ I. Thus € I. The
reverse implication is obvious.
(2) Let I,J € Spec(A) and z € (INJ)* then INJ :2z) € INJ. So
(I:z)Nn(J:z) € INJand so either (I :z) Z I or (J:xz) < J. Thus
xel*=1Torzxe J" =J. Conversely, let x € I = I*, then there exists
a € Asuch that ax € T and a ¢ I. Let j € J\ I, we have ajz € I NJ and
aj ¢ INJ since aj ¢ I. Sox € (INJ)* and then I C (INJ)*. In the same
way we show that J C (I'NJ)*. Thus (INJ)*=1UJ.
O

We recall that an ideal I of A disjoint with S is said to be an S-prime
ideal if and only if (I : s) is prime for some s € S [14, Proposition 1]. In
this case, (I : s) is a prime ideal corresponding to the ideal I. Let 3 the
set of all prime ideals corresponding to all S-prime ideals, i.e., P = {( :
s)/I is an ideal of A disjoint with S, s € S, and (I : s) is prime}.

Theorem 2.15. If every ideal of A disjoint with S is S-primal, then P is
totally ordered. The converse is hold if there exists s € S such that (I : s)*
18 disjoint with S.

Proof. Assume that every ideal of A disjoint with S is S-primal. Suppose
that 9B is not totally ordered. Then there exist (I : s), (J : t) € B such that
(I:8)Z (J:t)and (J:t) L (I:s). Since (I NJ: st) is disjoint with S,
then (I NJ : st) is S-primal so there exists u € S such that (I NJ : stu)*
is an ideal of A. On the other hand, since (I : s) and (J : t) are prime, it
follows from the previous lemma that (I :s) = (I : s)* and (J : t)* = (J : t).
Also, since I and J are disjoint with S, then tu ¢ (I : s) = (I : s)* and
su¢ (J:t)=(J:t)*. Hence, (I : stu) = (I :s)and (J : tsu) = (J : t)
thus (I N J :stu) = (L : stu) N (J : stu) = (I : )N (J : t). Then, by the
previous lemma, we obtain (I NJ : stu)* = (I : s) U (J : t) is an ideal,
absurd. Conversely, we show under the hypothesis that (I : s)* is disjoint
with S for some s € S that every ideal of A is S-primal. Let I be an ideal
of A disjoint with S. Then there exists s € S such that (I : s)* NS = 0.
As in [16, theorem 2], A\ (I : s)* is a saturated multiplicative subset of A
and so (I : 8)* = Ujer P;, where P; is a prime ideal of A for all i € I. Since
(I:5)*NS =0, then P,NS = () for every i. So, P, = (P; : 1) € B. Therefore
(P))ier is a chain and then U;crP; is an ideal of A. Thus (I : s)* is an ideal
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of A, as desired. O

The following corollary characterizes rings in which every proper ideal is
primal.

Corollary 2.16. Every proper ideal of A is a primal if and only if Spec(A)
1s totally ordered.

Proof. It suffices to consider a multiplicative subset which consist of units

elements and to apply the previous Theorem.
O

Corollary 2.17. (1) If A is a chained ring then, every proper ideal of
A is primal.
(2) If A is a valuation ring then, every proper ideal of A is primal.

3. S-PRIMAL IN TRIVIAL EXTENSION AND AMALGAMATION ALGEBRA

In this section, we study the S-primal property in Nagata’s idealization.
To do this, we recall some facts on the idealization. The idealization of E
in A (or trivial extension of A by E) is a commutative ring

Ax E={(a,e)/ac Ajec E}

under the usual addition and the multiplication defined as (a,e)(b, f) =
(ab,af + be) for all (a,e), (b, f) € A x E (see for instance [1],[3],[10]). T
was shown in [1] that if S is a multiplicative subset of A, then S o 0 is
a multiplicative subset of A o E. Note that, an ideal I is disjoint with a
multiplicative subset S of A if and only if I «c E is disjoint with S o 0.

-+

Theorem 3.1. Let A be a ring, S be a multiplicative subset of A, E be an
A-module and let I be a proper ideal of A. Then :

(1) I < E is an S o 0-primal ideal of A < E if and only if I is an
S-primal ideal of A.

(2) Let N be a proper submodule of E such that IE C N and assume
that adj(N)NS = 0. Then I < N is an S < 0-primal ideal of A x E
if and only if there exists s € S such that (I : s)* Uadj(N) is an
ideal of A.

Proof. (1) It remains to show that (I o< E : (5,0))* = (I : s)* « E, where
s € S. Indeed, let (z,f) € (I x E : (s,0))*. There exists (b,g) ¢ (I x
E : (s,0)) such that (b,g)(z, f) € ({ < E : (5,0)). So (b,g)(s,0) ¢ [ x E
and (b, g)(x, f)(s,0) € I x E. Thus b ¢ (I : s) and bz € (I : s) and then
x € (I :s)*. Therefore (z,f) € (I : s)* «x E. Conversely, let (z,f) €
(I :8)* o< E, then z € (I : s)*. So there exists a € A such that as ¢ I
and axs € I. Thus (a,0)(s,0) ¢ I x E and (a,0)(z, f)(s,0) € T x E.
Then (a,0) ¢ (I < E : (s,0)) and (a,0)(z,f) € (I x E : (s,0)). Thus
(x,f) € (I < E : (s5,0))*. Finally, the result follows from the fact that,
(I x E:(s,0))* is an ideal of A o< E if and only if (I : s)* is an ideal of A.
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(2) Under additional hypothesis adj(N) NS = (), we prove that (I o
N : (5,0)" = ((I:s)*Uadj(N)) x E. Let (z,e) € (I x N : (s,0))*,
then there exists (b,y) € A « E such that (b,y) ¢ (I x N : (s,0)) and
(b,y)(z,e) € (I x N : (s,0)). So (b,y)(s,0) = (bs,ys) ¢ I x N and
(b,y)(x,e)(s,0) = (bxs,bse + ysx) € I x N. Then bxs € I, bse + ysz € N,
and either bs ¢ I or ys ¢ N. Two cases are then possible:

Case 1: If bs ¢ I, then b ¢ (I : s) and bz € (I : s). Thus z € (I : s)* and
then (z,e) € ((I : s)*Uadj(N)) x E.
Case 2: If bs € I, then ys ¢ N. Since bse + ysx € N and IF C N,
then bse € N and so ysz € N. Hence z € adj(N) and then (z,e) € ((I :
s)*Uadj(N)) < E.
From Cases 1 and 2, (I o< N : (5,0))* C ((I : 8)* Uadj(N)) x E. Now, let
(z,e) € (I:8)*Uadj(N)) x E, thenz € (I : s)*Uadj(N). So,ifx € (I :s)*,
then there exists b € A such that bz € (I :s) and b ¢ (I :s). Thus bzs € I
and bs ¢ I. If bE C N, then (z,€)(b,0)(s,0) = (bxs,bes) € I «x N and
(b,0)(s,0) = (bs,0) ¢ I o< N. Hence (z,e)(b,0) € (I «x N : (s,0)) and
(b,0) ¢ (I x N : (s,0)). Therefore (z,e) € (I x N : (s,0))*. Now, if
bE ¢ N, then there exists f € E such that bf ¢ N. So, (z,€)(0,bf)(s,0) =
(0,2bfs) € I oc N since bxs € I and IE C N. Also, (0,bf)(s,0) = (0,bsf) ¢
I &« N (otherwise, bfs € N and bf ¢ N implies that s € adj(N) N S,
absurd). Hence (z,¢e)(0,bf) € (I x N : (s,0)) and (0,bf) ¢ (I x N : (s,0)).
Therefore (z,e) € (I N : (s,0))*. On the other hand, if x € adj(N), then
there exists m ¢ N such that xm € N. Then (z,¢e)(0,m)(s,0) = (0,zms) €
I < N and (0,m)(s,0) = (0,ms) ¢ [ o« N (ms ¢ N, otherwise s € adj(N),
absurd). Thus (z,e)(0,m) € (I x N : (s,0)) and (0,m) ¢ (I x N : (s,0))
which means that (z,e) € (I < N : (s,0))*. Therefore ((I : s)* Uadj(N)) x
EC (I xN:(s0))* as desired.

]

Remark 3.2. (1) (I x E: (s,e)*=(I:5)*xFE, forall s € S and
ec k.

(2) Let N be a proper submodule of E such that IE C N and adj(N) N

S =10. Then (I < N : (5,0))* = (({ : 8)*Uadj(N)) < E, for all
sesS.

As a consequence of Theorem 3.1 in the case when S is a subset of units,
we announce the following result.

Corollary 3.3. (1) I < E is a primal ideal of A < E if and only if I
is a primal ideal of A. In this case (I x E)* =T* x E.
(2) Let N be a proper submodule of E such that IE C N. Then I x N
is a primal ideal of A < E if and only if I* Uadj(N) is an ideal of
A. In this case (I x N)* = (I*Uadj(N)) x E.

The following examples show that I o« N may not be primal even if I is
primal ideal of A or N is primal submodule of E.
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Example 3.4. (1) Let A=E =17Z,1 = {0}, and N = 6Z. Then I x N
is an ideal of A < E, I is a primal ideal of A, and I* =1 C adj(N).
But, I < N is not primal since (I < N)* = adj(N) x Z = (2Z U
3Z) x 7 is not an ideal of Z x 7.

(2) Let A = FE = K x K, where K is a field, I = {(0,0)} and N =
{0}x K. Then I x N is an ideal of A < E, N is a primal submodule
of E (adj(N) = N), and adj(N) C I* = ({0} x K)U(K x{0}). But,
I < N is not primal of A < E since ({0} x K) U (K x {0}) is not
an ideal of A.

There are in general primal ideals which are not primary; as shown by
([12], page 2). In the following example, we give an S-primal ideal that is
not S-primary :

Example 3.5. Let A = E = Z[z,y] and S = {(2",0)/ n € N}. Since
(zy,y?) is S-primal, then K = (zy,9?) « Z[z,y] is an S-primal ideal of
A x E by Theorem 3.1, but K is not S-primary ideal. Otherwise, since
(zy,0) = (x,0)(y,0) € K then, there exists n € N such that 2"y € (zy,y?)
or 2"kgk ¢ (zy,y?) for some k € N*, absurd.

Proposition 3.6. Let N be a primal submodule of E such that I[E C N.
Then, if I is an S-primary ideal of A and adj(N) NS =0, then I < N is
an S « 0-primal ideal of A x E.

Proof.

(1) Since I is an S-primary ideal of A, then by Proposition 2.13 there exists
s € S such that (I : s)* = +/({:s). We show that (I : s)* C adj(N). In-
deed, let a € (I : 5)* so there exists an integer n > 1 such that a" € (I : s).
Let m € E\ N then a"s € I and a”sm € N. Then, a"m € (N :s) = N
(since s ¢ adj(N)). Therefore a™ € adj(N) and hence a € adj(N). Thus,
(I :s)*Uadj(N) = adj(N) is an ideal of A and then I «« N is an S  0-
primal ideal of A o< E' by Theorem 3.1. |

In general, the contraction of a primal ideal by a ring homomorphism is
not primal as shown in the following example:

Example 3.7. Consider the ring A = Z[X], the A-module E = Z[X], and
the ring homomorphism [ : A — A < E, such that for each a € A, we have
f(a) = (a,0). Let I = (2X) be an ideal of A and N = (4,2X,X?) be a
submodule of E. Since I'* = 2Z[X|U XZ[X] and adj(N) = (2,X), then by
Corollary 3.3 I o< N is a primal ideal of A < E. However, f~'{(I x N) = I
is mot primal ideal of A (since I* is not an ideal of A).

Now, we investigate the transfer of S-primal property to some ideals of
amalgamation of rings. Let A and B be two rings, J be an ideal of B and
let f: A — B be a ring homomorphism. In this setting, we consider the
following subring of A x B:

Al J={(a,f(a)+j)/ac A je J}
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is called the amalgamation of A and B along J with respect to f. The
concept of amalgamation is an important and an interesting concept that
received a considerable attention by well-known established algebraists. Mo-
tivations and additional applications of the amalgamations are discussed in
detail in [6, 7, 8]. Let S be a multiplicative subset of A then S </ J =
{(s,f(s) + k)/s € S,k € J} is a multiplicative subset of A </ .J, in par-
ticular S’ = {(s, f(s))/s € SHC S >/ J) is a multiplicative subset of
A</ J. 160 ¢ f(S) then f(S) is a multiplicative subset of f(A)+ J. Also,
if f(S)NJ =0 then f(S)+ J is a multiplicative subset of f(A) + J.

Note that if L is an ideal of f(A) 4+ J, then L/ = {(a, f(a) + k)/a € A,k €
J, f(a) + k € L} is an ideal of A/ J.

Throughout this last part, A and B will be two rings, f : A — B be a ring
homomorphism, and S be a multiplicative subset of A. I will be a proper
ideal of A and J, L be ideals of B and f(A) + J respectively.

Theorem 3.8. We preserve the above notation.

(1) The following statements are equivalent:
(a) I <! J is an S'-primal ideal of A <! J.
(b) Tl Jis an (S vaf J)-primal ideal of A<l J.
(c) I is an S-primal ideal of A.
(2) Assume that f(S)NJ = 0. Then Lf is an (S </ J)-primal ideal of
A<l J if and only if L is an (f(S) + J)-primal ideal of f(A) + J.

The proof of Theorem 3.8 draws on the following lemma.

Lemma 3.9. (1) (Ivaf J: (s, f(s)+k))=(I:5)<x/ J, where s € S
and k € J.
(2) ((I:s)p<f J)* = (I:5)*</ J, where s € S.
(3) (LY : (s, f(5)+k))* is an ideal of A</ J if and only if (L : f(s)+k)*
is anzdealoff( )+ J, where s € S and k € J.

Proof.

(1) Let (s,f(s) + k) € S >/ J and (2, f(z) + j) € A </ J. Then
(z, f(x) + ) € (I : s) >/ Jif and only if zs € I if and only if (z, f(z) +
J)(s, f(s )+/€)=(xs f(a:s)—i—]f( )+ kf(x) + jk) € I </ J if and only if

(e, F{@) + ) € (T2 T+ (s, f(5) + k).

(2) Let (z, f(x) + ) (I :s)* >/ J, then z € (I : 5)*. So, there exists
aeAsuchtht xc(I:s)anda¢ (I:s). Thus (a,f(a)) & (I:s)>af J
and (a, f(a))(z, f(z) + ) = (ax, f(az) + f(a)k) € (I : s) >/ J. Then

(z

(z, f(x ) k) € ((I:s)oaf J)*. Now, let (z, f(z) + k) € ((I:s)xf J)*
Then there exists (a, f(a)+j) € A</ J such that (a, f(a)+7) ¢ (I :s) </ J
and (a, f(a) +j)(z, f(z) + k) € (I :s)>af J. Soar € (I:s)and a ¢ (I:s)
and then z € (I : s) Therefore (x, f(z) + k) € (I : s)* >l J.

(3) Assume that (L : (s, f(s) + k))* is an ideal of A </ J and let y; =
flar) + k1,y2 = f(az) + k2 € (L : f(s) + k)*. Then there exists f(b1) +
J1, f(b2) + jo € f(A) + J such that f(b1) + j1, f(b2) +j2 & (L : f(s) + k)
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and (f(a1) + k1)(f(br) + j1), (f(a2) +
So (b, f(b1) + 1), (b2, f(b2) + jo), & (L7

k1) (b1, f(br) + 1), (az, f(az) + k2) (b2, f (b2 )+j2) € (L' : (5, f(s)+K)). Then
(a1, f(a1) + k1), (az, f(az) + k2) € (L : (s,f(s) + K))*. So (a1, f(a1) +
k1) + (a2, f(az) + ko) € (L' : (s, f(s) + k))*. Hence, there exists (c, f(c) +
j) & (LY : (s, f(s) + k)) such that (c, f(c) + j)(ar + a2, f(a1) + k1 +
flaz) + ko) € (L) : (s,f(s) + k). So f(e)+j ¢ (L : f(8)+7€) and
(f(e) + ) +w2) € (L : f(s) + k). Thus g1 +yp € (L = f(s) + k)"
Conversely, assume that (L : f(s) + k)* is an 1deal of f (A) + J and let
z1 = (a1, flar) + k1), 22 = (ag, flaz) + k2) € ﬁ : (s, f(s) + k))*. Then
there exdists (b, f(b1) + 1), (ba. F(bo) + ja), ¢ (L : (s, f(s) + k) such that
(a1, f(ar) k1) (br, £(b1)+i1), (az, f(az)+k2)(b2, f(b2)+72) € (L = (s, f(s)+
k)). So f(b1) + j1, f(b2) +j2 & (L : f(s) + k) and (f(a1) + kl)(f(bl) +
1), (f(a2) + k2)(f(b2) + j2) € (L : f(s) + k). Thus f(a1) + ki, f(az2) + k2 €
(L: f(s)+k)*. So f(a1)+ki+ f(az)+ke € (L: f(s)+k)*. Then there exists
f(e)+3 ¢ (L: f(s) + k) such that (f(c) +)(f(a1) + k1 + f(az) + k2) € (L
f(s) +k). So (e, f(e) + ) & (L : (s, f(s) + k)) and (c, f(c) +j)(21 + 22) =
(c, f(c) +j)(a1 + az, f(a1) + k1 + f(az) + k2) € (L' : (s, f(s) + k)). Then
21+ 20 € (L : (s, f(5) + k))*, as desired. O

)( (b2) +42) € (L = f(s) + k).
2 (s, f(s) + k) and (ay, f(a1) +

2

+
k
L

Proof of Theorem 3.8

(1) (a) = (b) Follows immediately from the fact that S’ C S </ J.

(b) = (c) Assume that I >/ J is an (S </ J)-primal ideal of A >/ J.
Then, there exists (s, f(s) + k) € S </ J such that (I >/ J : (s, f(s) +k))
is a primal ideal of A >af J. So by Lemma 3.9 (I : s)* >/ J = ((I : 5) >af
J)* = ((I>f J: (s, f(s)+k)))* is an ideal of A</ J. Thus (I : s)* is an
ideal of A and then [ is a S-primal ideal of A.

(¢) = (a) Assume that I is an S-primal ideal of A, then there exists s € S
such that (I : s) is a primal ideal of A. Note that I NS = () if and only
if (I J)nS" = (. Since (I : s)* is an ideal of A, then by Lemma 3.9,
(Il T2 (s, f(8))* = ((I:s)paf J)* = (I:5)" </ Jisanideal of A</ J.
It follows that I </ J is an S’-primal ideal of A paf J.

(2) First, note that L/ N (S o</ J) = 0 if and only if LN (f(S) + J) = 0.
Assume that L7 is an (S >4/ J)-primal ideal of A >/ J. Then there exists
(s, f(s) + k) € (S >/ J) such that (L : (s, f(s) + k)) is a primal ideal of
A<l J. So (L' : (s, f(s)+k))* is an ideal of A >/ J. Then by Lemma 3.9,
(L: f(s)+ k)* is an ideal of f(A) + J and then L is an (f(S) + J)-primal
ideal of f(A)+J. Conversely, assume that L is an (f(S)+ J)-primal ideal of
f(A)+ J. Then there exists f(s)+k € (f(S)+J) such that (L : f(s) +k)*
is an ideal of f(A)+J. So by Lemma 3.9, (L’ : (s, f(s) + k))* is an ideal of
A</ J. Thus LY is an (S </ J)-primal ideal of A o</ J. O
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When S consists of units elements, we get the following corollary which
is a consequence of Theorem 3.8.

Corollary 3.10. I is a primal ideal of A if and only if I >af J is a primal
ideal of A<l J. In this case, (I <! J)* = I* >l J.

The next corollary examines the case of the amalgamated duplication
(A=B,f=14,5 ={(s,s)/s € SHC S 1)).

Corollary 3.11. Let K be a proper ideal of A. The following statements
are equivalent:

(a) K1 is an S'-primal ideal of A< .
(b) K1 is an (S < I)-primal ideal of A1,
(¢) K is an S-primal ideal of A.

The next example illustrates Theorem 3.8 by providing a new class of
S-primal ideal of A >af J that is not primal.

Example 3.12. Let A := Z[X|, where Z is the ring of integers, K be any
ideal of A and B := %. Let f : A — B be the canonical homomorphism
and S'" = {(2",27)/n € N}. Then (2X) </ J is an S'-primal ideal of
Al J that is not primal, for any proper ideal J of B.

Proof. Since ((2X) : 2)* = (X)* = (X), then (2X) is an S-primal ideal
of A, where S = {2"/n € N}. Then by Theorem 3.8, (2X) </ J is an
S’-primal ideal of A >/ J. But (2X) </ J is a not primal ideal of A >/ J.
Otherwise, by corollary 3.10 (2X)* »af J = ((2X) »f J)* is an ideal of
A/ J which is absurd since (2X)* is not an ideal of A. Indeed, 2 € (2X)*
and X € (2X)* but 2+ X ¢ (2X)* since 2+ X ¢ Z(A/(2X)).

O
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